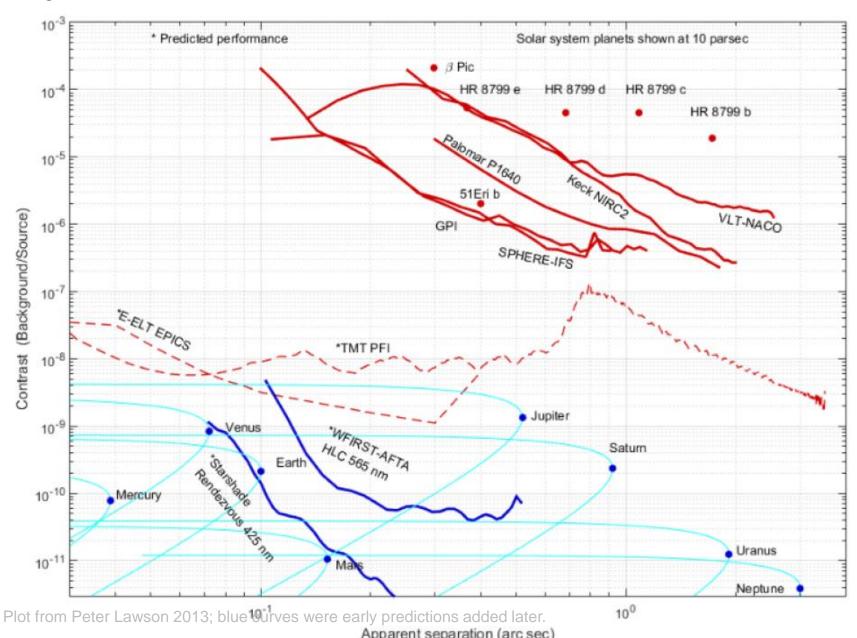


Nick Siegler
Chief Technologist
Exoplanet Exploration Program
Jet Propulsion Laboratory/California Institute of Technology


Bay Area Exoplanets Meeting 7 September 2018

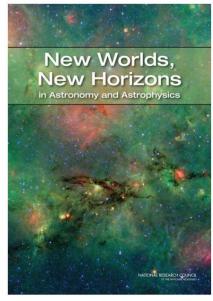
The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.

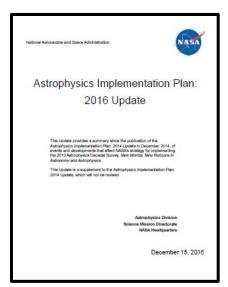
Contrast vs Separation

Figure from 2013

Coronagraph State-of-the-Art in 2009

Lab Demonstrations

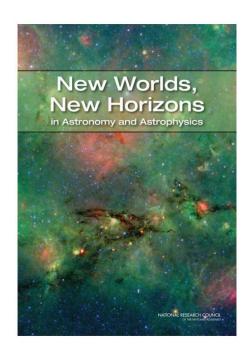

<u>Parameter</u>	<u>Hybrid Lyot</u> (linear mask)	<u>PIAA</u>	<u>PIAA</u> <u>Vortex</u> <u>Visil</u>	
Raw contrast (at IWA)	1.2 x 10 ⁻¹⁰	2 x 10 ⁻⁷	10 ⁻⁸	10 ⁻⁸
Bandwidth	2%	mono	mono	10nm/630nm
Working Angle	4 - 10 λ/D	1.65 - 4.4 λ/D	2.5 – 12 λ/D	2 – 4 λ/D
Reference	Trauger and Traub (2007) Nature	TDEM-09 whitepaper (Guyon)	TDEM-10 whitepaper (Serabyn)	Lyon et al (2009) SPIE paper


2010 Decadal Survey Recommendations

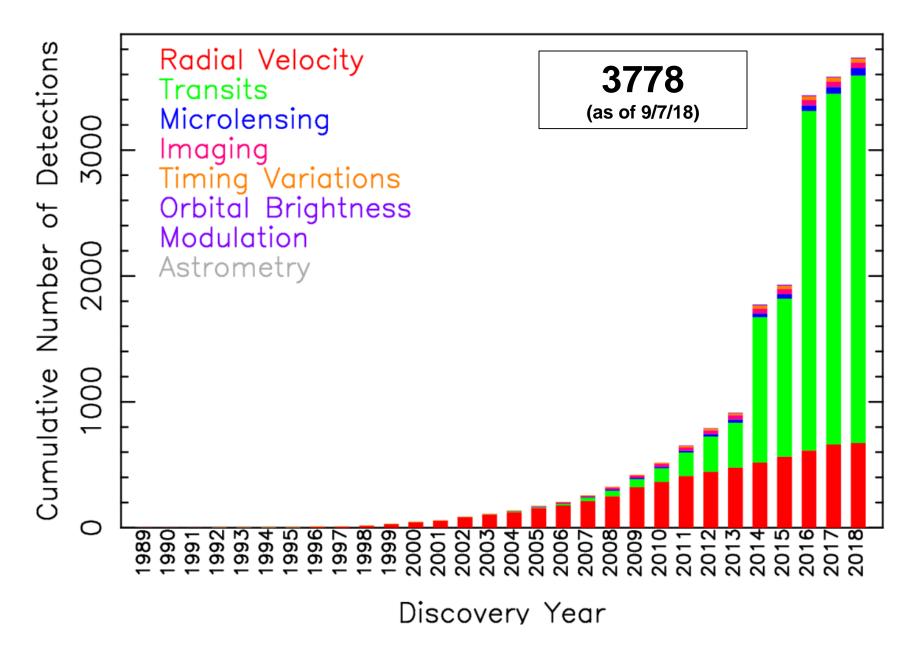
... and NASA Response

	Decadal Survey Recommendation	NASA Actions		
	Large-scale 1. WFIRST	In Phase A, launch in mid-2020s (see Section 4)		
	Large-Scale 2. Augmentation to Explorer Program	Executing 4 Announcements of Opportunity (AOs) per decade (see Section 5)		
	Large-Scale 3. LISA	Partnering on ESA's space-based gravitational wave observatory (see Section 6.1)		
	Large-Scale 4. IXO	Partnering on ESA's Athena X-ray observatory (see Section 6.2)		
	Medium-Scale 1. New Worlds Technology Development Program	WFIRST coronagraph; starshade and coronagraph technology development; Doppler spectrograph on WIYN telescope; exozodiacal dust survey with LBTI (see Section 7.1)		
	Medium-Scale 2. Inflation Probe Technology Development Program	Multiple balloon-borne investigations plus SAT investments (see Section 7.2)		
	Small-Scale. Research Program Augmentations	R&A as of FY2016 up 20% from FY2010; increase not targeted except TCAN (see Section 7.3)		
Small-Scale. Intermediate Technology Development Augmentation Small-Scale. SPICA (U.S. contribution)		Initiated Strategic Astrophysics Technology program; focused on identified strategic missions		
		Not supported as a strategic contribution; candidate for Explorer Mission of Opportunity		

Table 1. Recommended space activities of the 2010 Decadal Survey supported by the FY 2016 NASA Appropriation, the FY 2017 President's Budget Request, and its notional out year planning budget.



APD Implementation Plan (2012, 2014, 2016)


2010 Decadal Survey Recommendation

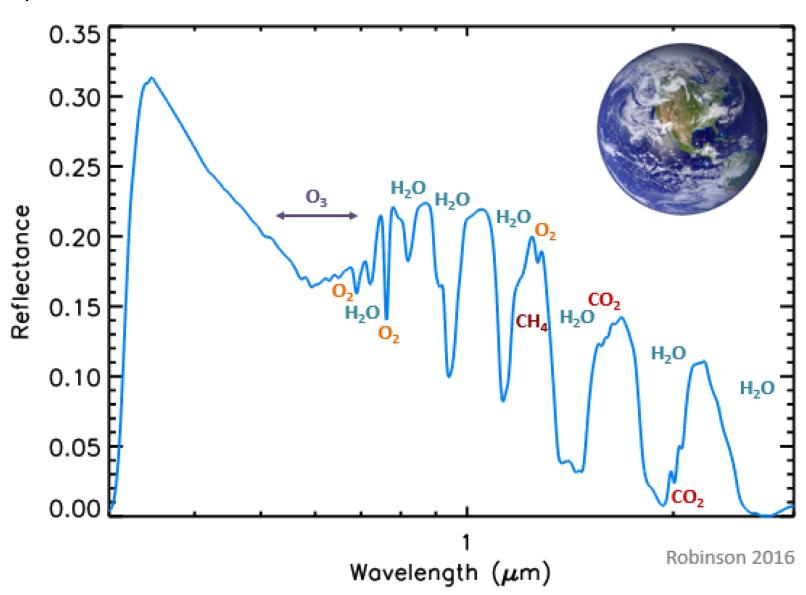
Medium Scale Category

TABLE ES.4 Space: Recommended Activities—Medium-Scale (Priority Order)						
Recommendation	Science	Appraisal of Costs ^a				
1. New Worlds Technology Development Program	Preparation for a planet-imaging mission beyond 2020, including precursor science activities	\$100M to \$200M				
2. Inflation Probe Technology Development Program	Cosmic microwave background (CMB)/ inflation technology development and preparation for a possible mission beyond 2020	\$60M to \$200M				

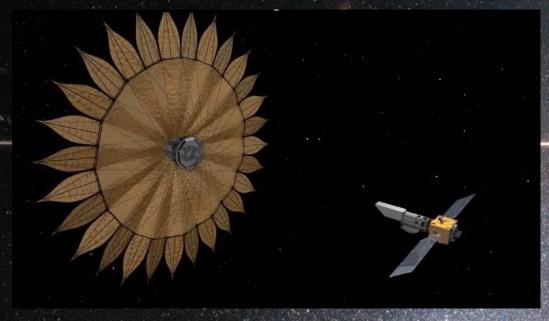
"...high-priority science areas for which mid-term investments are needed beginning early in the decade, including development of a variety of technologies for exoplanet imaging, such as coronagraphs, interferometers, and starshades, leading to possible late-decade down-selecting."

We now know that in our Galaxy...

Planets are common (> 1 per star)

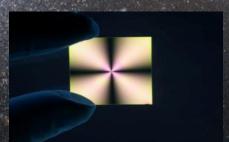

Planets with sizes
0.5-2 times Earth
are the most common

Earth-size planets in the Habitable Zone are common

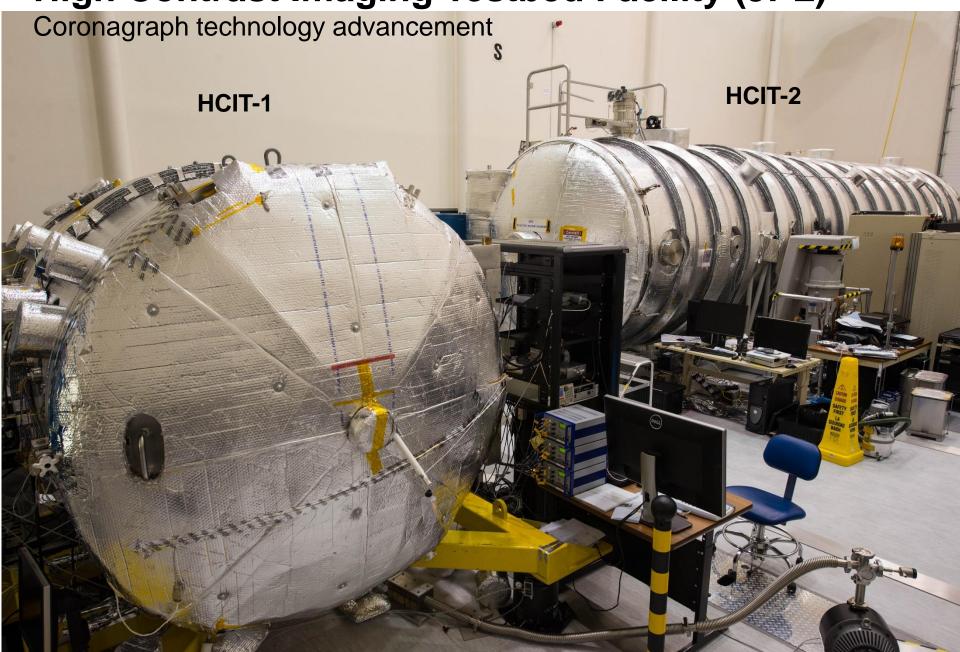

...we're ready for the search for life


Potential Biosignature Gases

Spectral Lines

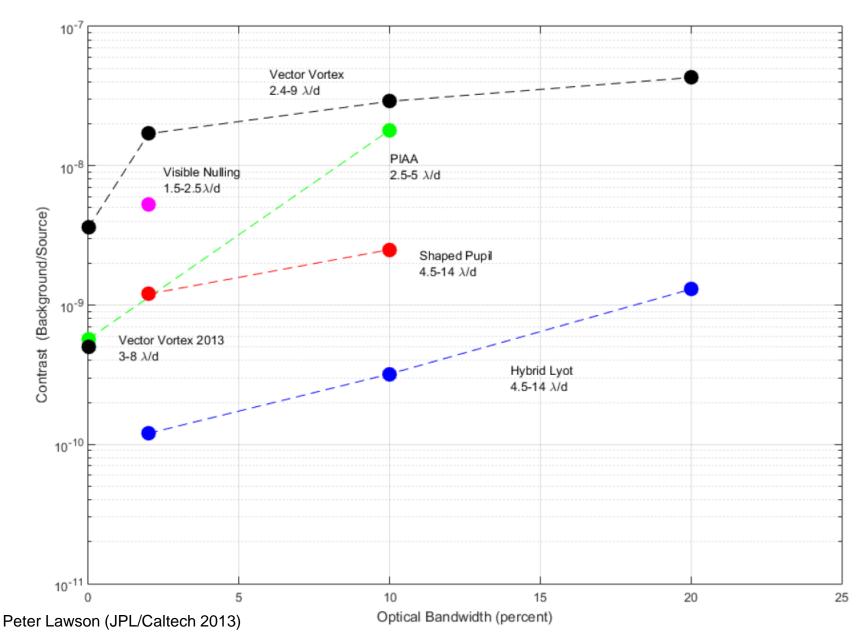

External Occulters (Starshades)

Internal Occulters (Coronagraphs)



NASA Response to Medium Scale Rec #1

Targeted technology grants

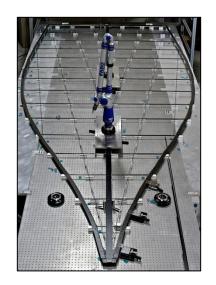

- Continued use of competitively selected individual investigator awards issued under the Astrophysics Research and Analysis (APRA) and Strategic Astrophysics Technology (SAT) programs.
 - APRA addresses early-TRL technologies (1-2)
 - SAT addresses mid-TRL technologies (3-5)
 - Within the SAT, **Technology Development for Exoplanet Missions** (TDEM) primarily focuses on exoplanet technologies.
- About 40 awards since 2010 have advanced the technology readiness of starshades, coronagraphs, and their associated supporting technologies.

High Contrast Imaging Testbed Facility (JPL)

Coronagraph Progress for Space

Contrast vs. Bandwidth

Coronagraph Progress for Space


- In 2013, coronagraphy was "spun off" from the ExEP to the WFIRST project to support technology advancement for their coronagraph instrument.
- Achieved TRL 5 in 2017
- Advancing component technologies
 - Deformable mirrors
 - Ultar-low noise detectors (EMCCDs)
 - Low-order wavefront sensors
 - Post-processing

Starshade Progress

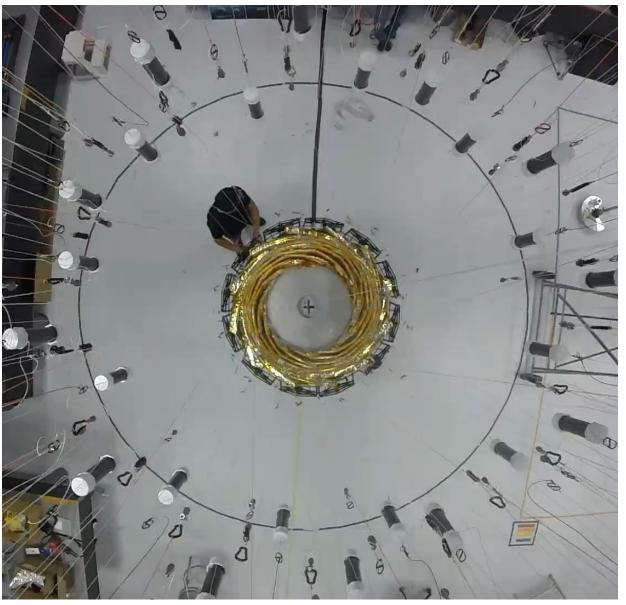
- Starshade advanced through TDEM Program:
 - petal manufacturing
 - optical demonstrations
 - inner disk deployment

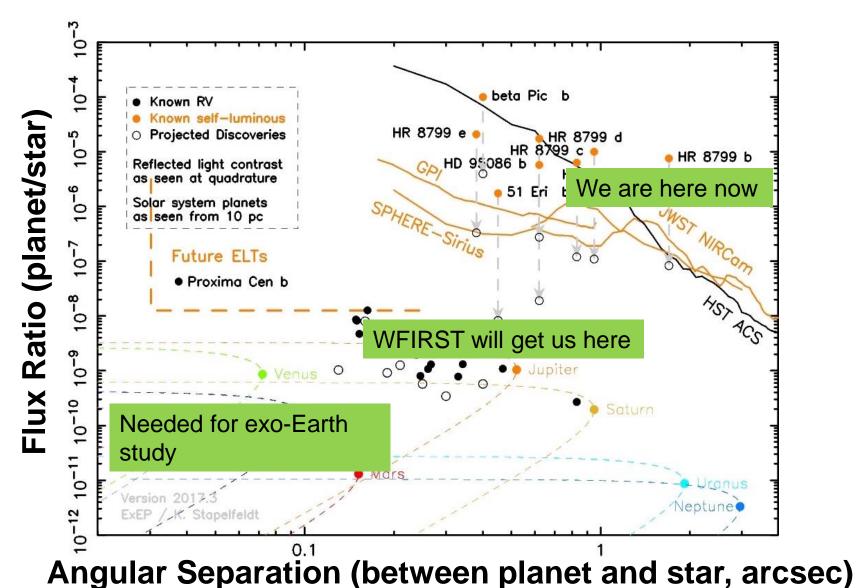
 In 2016, the starshade was spun off to establish a starshade technology development activity.

Petal Unfurler Testbed 2.0

JPL plus Tendeg Gravity Offloader

Inner Disk Deployment


10 m Prototype Demonstration (JPL)


18

Optical Shield Deployment

5 m Prototype Demonstration

Still a Way to go to Directly Imaging Exo-Earths

20

Active TDEMS

Advancing Coronagraphy to < 10⁻⁹

- Vortex (PI Gene Serabyn/JPL)
- Hybrid Lyot (PI John Trauger/JPL)
- PIAA (PI Rus Belikov/ARC)
- APLC (PI Remi Soummer/STScI)
- Multi-star wavefront control (PI Rus Belikov/ARC)

Understanding and Minimizing the Effects of Polarization

 Jim Breckinridge (Caltech) and UA team performing independent polarization ray-trace of the HabEx and LUVOIR optics

Advancing a Second 10⁻¹⁰ Deformable Mirror

- MEMS 32x32 (PI Paul Bierden/Boston Mocromachines)
- MEMS 50x50 (SBIR)

Segmented Mirror Technology Program

- Telescope apertures will continue to get larger and structural and wavefront error stability will be challenging when working with coronagraphs.
- Industry awards created to address system-level design and modeling challenges for achieving picometer-level wavefront error stability in a segmented UV/V/NIR space telescope.

Ultra-Stable Large Telescope Research and Analysis (ULTRA), PI Scott Knight (Ball Aerospace)

System-Level Segmented Telescope Design PI Larry Dewell (Lockheed Martin)

Segmented Coronagraph Design and Analysis

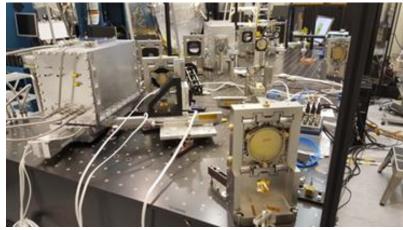
- Purpose: Ensure there is at least one coronagraph architecture that can meet the contrast requirements of future large segmented space telescopes to directly image and characterize exo-Earths.
- Promising designs delivered of the APLC (STScI/GSFC) and Vortex (Caltech/JPL) teams; HLC (JPL) catching up, PIAACMC (UA/Ames) and VNC GSFC) struggling to meet metrics.

Lessons learned:

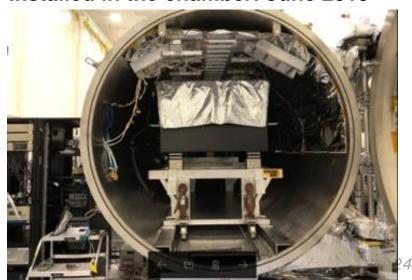
- Big dropoff in throughput seen when secondary obscuration exceeds 30% of the primary mirror diameter
- Angular size of the star problematic for some coronagraphs
- Segmentation gaps are not a major problem (if small)
- Central obscuration biggest challenge

Next steps

- Test new apodization masks in testbeds (not yet vacuum)
- Test the robustness of the designs to wavefront errors and tolerancing: Do these coronagraphs put constraints on the telescopes that are unrealistic?

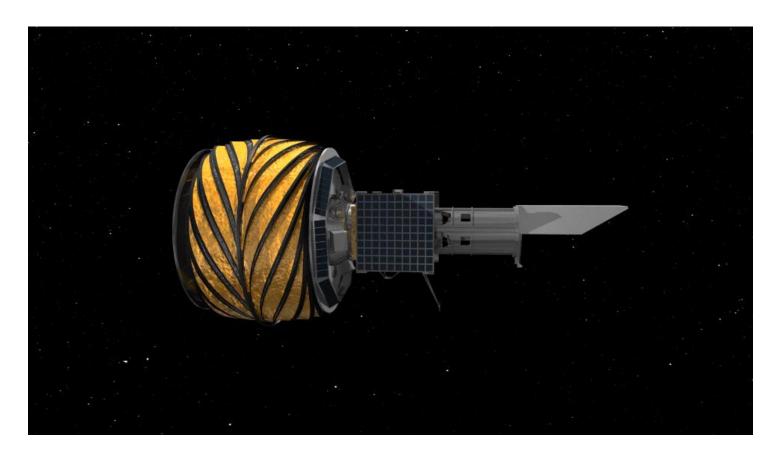

Decadal Survey Testbed

Advancing the next generation of coronagraphs


Purpose:

- Develop a testbed that is sufficiently low noise to demonstrate nextgeneration coronagraphs reach 10⁻¹⁰ contrast
- To be made available to community
- Currently Commissioning with a clear aperture plus Hybrid Lyot
 - Plan is to reach a new contrast record by the end of this CY (≤ 10⁻¹⁰)
- In CY19, add a segmented/obscured mask to simulate the segmentation pattern of a large space telescope mirror

Assembled optical bench



Installed in the chamber: June 2018

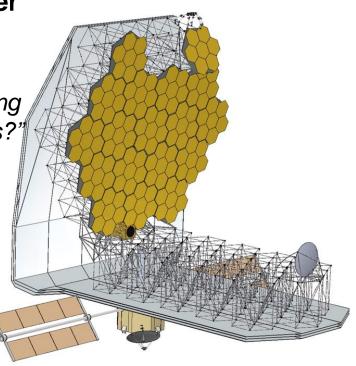
Starshade Deployment Trade Study Completed

Wrapped petal architecture selected

- Technology Development Plan advanced to bring the starshade to TRL 5 by early 2020s.
 - ❖ Review of milestones by ExoTAC in August
 - Delivery of Plan for NASA HQ approval in September

Inputs to National Academies Exoplanet and Astrobiology Strategy Committees

- Whitepaper submitted to the Astrobiology Science Strategy: Siegler et al. Technology Needs for Detecting Life Beyond the Solar System: A White Paper in Support of the Astrobiology Science Strategy arXiv:1801.07811
- Whitepaper submitted to the National Academies Exoplanet Science Strategy: Crill et al. Key Technology Challenges for the Study of Exoplanets and the Search for Habitable Worlds arXiv:1803.04457
- Briefed the NAS Exoplanet Science Strategy committee at their Irvine meeting on April 20, 2018 on "Exoplanet Technology Gaps" https://exoplanets.nasa.gov/internal_resources/893/


in-Space Assembled Telescope (iSAT) Study

 Chartered by NASA SMD and APD to answer the question:

When is it worth assembling telescopes in space rather than building them on the Earth and deploying them autonomously from individual launch vehicles?"

• Final deliverable is a White Paper to the Decadal Survey Committee in Spring 2019

- Activity 1a: Modularizing a 20 m space telescope
 - Workshop held at Caltech June 5-7
- Activity 1b: Assembling and testing the 20 m modularized telescope in space
 - Robotics, orbit, launch vehicle, assembly platform
 - Workshop scheduled for October 2-4 at LaRC

2018 ExEP Prioritized Technology List

Exoplanet Exploration Program

Coronagraphs
and
Starshades

Mass measurement to be advanced?

Mid-IR interferometry technology next decade?

Tech.	Technology Title	<u>Impact</u>	Urgency	<u>Trend</u>	2018	2017
ID	weight:	10	10	5	Score	Score
CG-2	Coronagraph Architecture	4	4	2	90	85
S-2	Starlight Suppression and Model Validation	4	4	2	90	90
S-1	Controlling Scattered Sunlight	4	4	2	90	90
S-3	Lateral Formation Sensing	4	4	2	90	90
S-5	Petal Positioning Accuracy and Opaque Structure	4	4	2	90	90
S-4	Petal Shape and Stability	4	4	2	90	90
CG-3	Deformable Mirrors	4	4	2	90	80
CG-1	Large Aperture Primary Mirrors	4	3	3	85	85
CG-6	Mirror Segment Phasing	4	3	3	85	85
CG-7	Telescope Vibration Sense/Control or Reduction	4	3	3	85	85
CG-9	Ultra-Low Noise Near-Infrared Detectors	4	3	3	85	85
CG-5	Wavefront Sensing and Control	4	3	2	80	80
CG-8	Ultra-Low Noise Visible Detectors	4	3	2	80	80
M-4	Ultra-Stable Mid-IR detector	3	3	4	80	
M-3	Astrometry	3	3	3	75	
CG-4	Data Post-Processing Algorithms and Techniques	4	2	2	70	70
CG-10	Mirror Coatings for UV/NIR/Vis	3	3	2	70	70
M-2	Space-based Laser Frequency Combs	3	3	2	70	
CG-13	Ultra Low-noise Mid-IR detectors	2	3	4	70	
M-1	Extreme Precision Ground-based Radial Velocity	2	3	3	65	75
CG-14	Mid-IR Large Aperture Telescopes	2	3	3	65	
CG-15	Mid-IR Coronagraph Optics and Architecture	2	3	3	65	
CG-16	Cryogenic Deformable mirror	2	3	3	65	
CG-12	Ultra-Low Noise UV Detectors	2	3	2	60	60